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Abstract. In this contribution we examine the separability of relativistic electron propagators. Both, mag-
netic and non-magnetic systems are studied on the basis of the Kohn-Sham-Dirac equation. We find a
Dirac-Green’s function in excellent agreement with recent calculations utilizing the left and right-handed
solutions to the Dirac equation. Starting from these Dirac-Green’s functions we re-derive a rotation ma-
trix formalism that was shown to result in separable scattering matrices in the non-relativistic case. It
turns out, that spin-dependent scattering matrices can be formulated which are closely related to their
non-relativistic counterparts. These matrices incorporate spin-flip and non spin-flip processes on an equal
footing, but are irreducible to sums over composite rotation matrices. The latter result is a major draw-
back for numerical applications since electron scattering in terms of composite rotations had drawn a lot
of attention recently.

PACS. 79.60.-i Photoemission and photoelectron spectra – 61.14.Dc Theories of diffraction and scattering

1 Introduction

Photoemission is one of the most frequently used tools to
identify the chemical composition, atomic geometry, and
electronic structure of solids and their surfaces [1]. The
emission of electrons from an initial state to some final
state due to electron-photon interactions can be formu-
lated according to Fermi’s Golden Rule. A key difference
between atomic and solid state photoemission is the occur-
rence of final state scattering of the electronic wavefunc-
tions in the latter case. Delocalized initial states should
be calculated within the framework of scattering theory
as well. It is therefore customary to factorize the matrix
elements appearing in the Golden Rule into purely atomic
transition probabilities leading to selection rules and path
operators which guide the outgoing electrons through the
atomic environment. Within this frame it becomes possi-
ble to calculate anisotropy functions that separate atomic
from solid state effects. The path operators can be formu-
lated in terms of free particle Green’s functions and single
site scattering matrices. In numerical applications the ad-
vantages of Green’s function methods are limited by the
number of atoms in the slab (or cluster) and the scattering
order to which the calculations should be carried out. One
way to overcome these limitations, at least partially, is to
express each Green’s function in terms of rotation matri-
ces and one-dimensional propagators as suggested by Rehr
and Albers [2]. Here, the scattering path of an electron is

a e-mail: hzach@nwz.uni-muenster.de

described by a sum over scattering and termination ma-
trices that depend on composite rotations only. Moreover,
each scattering matrix is a sum over solely one angular mo-
mentum and therefore the complicated momentum mixing
inherent in the exact Green’s function method is lifted.

The Rehr-Albers formalism, however, does not explic-
itly treat electronic spin states and their coupling mecha-
nisms. The inclusion of spin states demands to formulate
the theory within the framework of the Dirac theory. Com-
pared to the non-relativistic description of photoemission
depicted above, relativistic treatments comprise a number
of new features like couplings between the spin and orbital
degrees of freedom. During the last decade relativistic the-
ories have been used frequently to relate the structure of
surfaces to their magnetic order [3–5]. In addition, such
theories are necessary and suitable when discussing cir-
cular and magnetic dichroisms as was shown recently by
Tong et al. [6]. In the majority of cases the emission pro-
cess itself is formulated within the framework of the Dirac
theory while the scattering path of the outgoing electrons
is described by the non-relativistic Schrödinger theory. In
this contribution explicit expressions for relativistic scat-
tering path operators are extracted and it will be shown
that these operators can be reduced to spin-dependent
scattering matrices which are fully angular momentum
decoupled. We also show, that the Rehr-Albers formal-
ism can not be generalized to the relativistic case since
the advantage of utilizing composite rotation matrices is
lost. The latter proof can be viewed as a serious shortfall
since these composite rotations are essential for deriving
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a numerically fast theory. The situation is even worse in
the case of ferromagnetic materials where the procedure
breaks down in the beginning.

2 Separability of structure constants

Starting from the Golden Rule photoemission intensities
can be written as a double sum over all possible scatter-
ing paths and final state quantum numbers Lf = (lf ,mf)
according to [2]

I(k) ∝

∣∣∣∣∣∑
path

∑
Lf

GLD,Lf
(Ri)Mf,i

∣∣∣∣∣
2

. (1)

Therein Mf,i = 〈Ψf |∆|Ψi〉 denotes the transition matrix
from an initial to a final state due to an interaction op-
erator ∆, the GLD,Lf

(Ri) are matrix elements of Green’s
functions in an angular momentum and site basis, and
LD = (lD,mD) is an angular momentum expansion at the
point of detection. Our model system may consist of an
emitting atom located at R0, a neighboring atom acting
as a scattering center positioned at R1, and a point of
detection RD far away from the atomic ensemble. Within
the single scattering approximation the Dyson equation
reads

GLD,Lf
(R0,R1,RD) = G

(0)
LD,Lf

(ρD,0)

+
∑
L1

G
(0)
LD,L1

(ρD,1)tL1(R1)G
(0)
L1,Lf

(ρ1,0). (2)

Herein the Lµ are sets of quantum numbers Lµ = (lµ,mµ)
and the ρi+1,i = k(Ri+1 − Ri) are dimensionless bond

vectors. The first term, G
(0)
LD,Lf

(ρD,0), generates an un-
scattered wave travelling from the emitting site R0 to-
wards the detector at point RD. The point of detection
is positioned at some distance far away from the atomic
ensemble and for this the quantum number LD is given
through the set (0, 0) since this definition leads to plane
wave final states. The second term describes single scat-
tering, that is wave propagation from the emitting site R0

to a scattering center positioned at R1, conversion of the
incoming wave into a scattered wave due to the single site
scattering matrix tL1(R1) and finally the propagation of
the scattered wave from R1 towards the detector. The sin-
gle site scattering matrices are fully determined through
the scattering phase shifts and depend parametrically on
the position vectors Ri while functionally they depend on
energy.

The definition given above demonstrates, that angu-
lar momentum and site expansions of the free particle
Green’s functions can be understood as propagators lead-
ing an outgoing electron from one scattering center to an-
other. Moreover, since these propagators depend on the
coordinates of the atomic environment they are some-
times referred to as “structure constants”. Such structure
constants also appear in theories utilizing scattering path

operators [7] and secular equations for Korringa-Kohn-
Rostocker determinants [8]. The first step to derive a sep-
arable representation of the structure constants consists
in applying the Rotation-Translation-Transformation [9]
to them. This can be done by writing

G
(0)
L,L′(ρ) =

eiρ

ρ

l∑
µ=−l

Rlm,µ(Ω−1
ρ )g

|µ|
ll′ (ρ)Rl

′

µ,m′(Ωρ). (3)

The Rlm,µ(Ωρ) are rotation matrices depending on Euler
angles Ωρ = (α, β, γ) which rotate the coordinate frame.
After the rotation the z-axis points along some internu-

clear axis. The dimensionless z-axis propagator g
|µ|
ll′ (ρ) de-

scribes the motion of an electron from one atomic center
to another. This term depends on the z-coordinate only
because the z-axis of the coordinate frame now parallels
the interatomic bond. In the last step the coordinate frame
is rotated back to its initial position which is described by
Rlm,µ(Ω−1

ρ ) with Ωρ = (−γ,−β,−α). At this point it is

necessary (a) to find an explicit expression for the gµll′(ρ)
and (b) to decouple the angular momenta l and l′. One
way to proceed is to multiply equation (3) by Rlm,µ′(Ωρ)

from the left and by Rl
′

µ,m′(Ω
−1
ρ ) from the right. Then

both sides have to be summed over the indices m and m′

and the orthogonality of the rotation matrices has to be
taken into account. This leads to

gµll′(ρ) = ρe−iρGµ,µll′ (ρ) (4)

with

Gµµll′ (ρ) =
∑
mm′

Rlmµ(Ωρ)G
(0)
LL′(ρ )Rl

′

µm′(Ω
−1
ρ ). (5)

It should be emphazised that the Gµµll′ (ρ) are diagonal in
µ which leads to less effort in numerical applications. We
now have to find a separable form of equation (4). This sec-
ond step includes comprehensive analytic work and there-
fore we only sketch the basics here. A more detailed dis-
cussion is given in the original work [2]. Starting from the
integral representation of the free particle Green’s function
Rehr and Albers showed that after some formal manipu-
lations on the integration boundaries and the subsequent
application of a special type of transformation the z-axis
propagators can be written as

gµll′(ρ) =
τ∑
ν=0

γ̃lµν(ρ)γl
′

µν(ρ) (6)

with τ = min(l, l′ − µ) and

γlµν(ρ) = (−1)µNlµ
zµ+ν

(µ+ ν)!

dµ+ν

dzµ+ν
Cl(z) (7)

γ̃lµν(ρ) =
(2l + 1)

Nlµ

zν

ν!

dν

dzν
Cl(z). (8)

Here, z = 1/iρ and the polynomials Cl(z) satisfy the re-
currence relation

dm

dzm
{Cl+1 = Cl−1 − (2l + 1)zCl} (9)
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together with the initial conditions C0(z) = 1 and C1(z) =
1− z.

It is now straightforward to insert these z-axis propa-
gators into equation (3) yielding to

G
(0)
LL′(ρ) =

eiρ

ρ

l∑
µ=−l

τ∑
ν=0

Rlmµ(Ω−1
ρ )γ̃lµν(ρ)γl

′

µν(ρ)Rl
′

µm′(Ωρ)

(10)

def
=

eiρ

ρ

∑
λ

Γ̃Lλ (ρ)ΓL
′

λ (ρ). (11)

Thus, we have finally reached the desired decoupled form
of the structure constants. Equation (10) became promi-
nent for numerical applications [11] during the past years
because if substituted into the Dyson equation (2) it can
be separated according to

GLD,Lf
(RD,R1,R0) = MLD,Lf

(RD,R0)

+NLD,Lf
(RD,R1,R0) (12)

with

MLD,Lf
(RD,R0) =

eiρD,0

ρD,0

∑
λ

Γ̃LD

λ (ρD,0)ΓLf

λ (ρD,0) (13)

NLD,Lf
(RD,R1,R0) =

eiρD,1

ρD,1

eiρ1,0

ρ1,0

∑
L1

∑
λ,λ′

Γ̃LD

λ (ρD,1)

× ΓL1

λ (ρD,1)tl1(R1)Γ̃L1

λ′ (ρ1,0)ΓLf

λ′ (ρ1,0). (14)

Now we re-arrange the NLD,Lf
term and sum over L1 first.

Then we define the functions

Fλ,λ′(ρD,1,ρ1,0) =
∑
L1

ΓL1

λ (ρD,1)tl1(R1)Γ̃L1

λ′ (ρ1,0) (15)

and

TLD,L0

λ,λ′ (ρD,1,ρ1,0) = Γ̃LD

λ (ρD,1)ΓLf

λ′ (ρ1,0) (16)

where the latter one can be viewed as a termination func-
tion since it incorporates the quantum numbers of the ini-
tial and final states. With these definitions equation (12)
reads

GLD,Lf
(RD,R1,R0) =

eiρD,0

ρD,0

∑
λ

TLD,Lf

λ,λ (ρD,0)

+
eiρD,1

ρD,1

eiρ1,0

ρ1,0

∑
λ,λ′

TLD,Lf

λ,λ′ (ρD,1,ρ1,0)Fλ,λ′(ρD,1,ρ1,0).

(17)

Inspecting the inner nature of the Fλ,λ′ we find

Fλ,λ′(ρD,1,ρ1,0) =
∑
L1

tl1(R1)γl1µν(ρD,1)Rl1µm1
(ΩρD,1)

×Rl1µ′m1
(Ω−1

ρ1,0
)γ̃l1µ′ν′(ρ1,0) (18)

=
∑
l1

tl1(R1)γl1µν(ρD,1)Rl1µµ′(ΩρD,1ρ1,0)

× γ̃l1µ′ν′(ρ1,0). (19)

In this form the functions Fλ,λ′ only depend on the com-

posite rotation matrices Rl1µµ′ and for that a backrotation
is not necessary. This elimination of backrotations drasti-
cally reduces the complexity of the formalism. From ro-
tation matrix theory we also know that each such matrix
can be factored as

Rl1µµ′(ΩρD,1ρ1,0) = eiα̃µdl1µµ′(β̃)eiγ̃µ′ (20)

and this in turn allows us to write

Fλ,λ′(ρD,1,ρ1,0) = eiα̃µf β̃λ,λ′(ρD,1, ρ1,0)eiγ̃µ
′

(21)

with scattering factors fλ,λ′ depending on bond lengths

and scattering angles β̃ only and given through

f β̃λ,λ′(ρD,1, ρ1,0) =
∑
l1

tl1(R1)γl1µν(ρD,1)dl1µµ′(β̃)γ̃l1µ′ν′(ρ1,0).

(22)

Moreover, by including multiple scattering, and therefore
additional Fλ,λ′ terms, it can be shown that the scattering
path depends on the additive angles ωi = γ̃i + α̃i+1.

3 Relativistic formulation

There are two possible reasons to develop a relativistic
formulation of electron emission and scattering. The first
is related to kinematic effects like contractions and ex-
pansions of orbitals [10] caused by core electrons with
Fermi momentum comparable to mc. Electronic orbitals
less localized at the nuclei show a response contraction
(or expansion) that may lead to bond length modifica-
tions in molecules. The second reason is linked to the in-
clusion of spin degrees of freedom in the description of
emission and scattering processes. Spin-polarized photoe-
mission is influenced by two different mechanisms. First,
there is spin-orbit interaction between polarized electrons
endowed with some magnetic moment and a scattering
potential which is not necessarily spin polarized. Sec-
ond, there is quantum mechanical exchange interaction
between the magnetic moments of the electrons and the
substrate. The inclusion of both effects can however be a
cumbersome task. Therefore most of the early calculations
were carried out within a hybrid formalism in which ei-
ther spin-orbit or exchange interactions are excluded [13].
Later on, these lacks of completeness were removed by
solving the 4-component Dirac equation rather than some
scalar-relativistic approximation to it [4].

In the following we examine the applicability Rehr-
Albers procedure to magnetic and non-magnetic systems.
As in Section 2 we concentrate on the electron prop-
agators. Recently, Ankudinov and Rehr also extended
the Rehr-Albers formalism to the relativistic case [14].
Their calculations focussed on the emission matrix and
had left the propagators in their non-relativistic form.
Complementary, our work discusses the separability of
the propagators in the relativistic case. We start from
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the Kohn-Sham-Dirac Hamiltonian [15,16] in the absence
of a magnetic field [17]

HDΨn = (αp + β + Veff [n(r)]14×4)Ψn = εnΨn (23)

with p = −i ∇ being the electron momentum and α =
(α1, α2, α3) as well as β denote standard Dirac matrices.
The effective potential Veff is a functional of the elec-
tronic number density n(r) and is chosen to be spheri-
cally symmetric and bounded by non-overlapping spheres.
It contains the interactions between the electronic system
and the nuclei through a Coulomb potential Vext[n], the
interactions between the electrons themselves through a
Hartree potential VH [n], and an exchange-correlation po-
tential Vxc[n] that accounts for exclusion principles and
correlated motion within the many-electron system. The
latter one has to be approximated and within the local
density approximation (LDA) it can be written as

Vxc ≈ εx

{
1 + n

(
δΦDF(n)

δn
+
δΦT(n)

δn

)}
+ n

δεx

δn
(ΦDF(n) + ΦT(n)) + εc +

δεc

δn
(24)

where ΦDF(n) and ΦT(n) are Dirac-Fock and Transverse
corrections, respectively. They can be found in a work by
MacDonald and Vosko [18]. Finally, the ε2n = k2

n + 1 rep-
resent single particle energies. A relativistic generalisation
of the theory presented in Section 2 requires the deriva-
tion of single-site t-matrices and structure constants from
the Kohn-Sham-Dirac Hamiltonian (23). The t-matrices
can be obtained from solutions inside and outside the po-
tential spheres by matching their values and slopes con-
tinuously at the sphere boundaries. Inside each sphere the
solutions are expanded according to [19]

Ψ in
n (r) =

∑
κ,mj

1

r

[
fκ(r) χ

mj
κ (r)

igκ(r) χ
mj
−κ(r)

]
(25)

wherein κ = {±1,±2,±3, · · · } and the quantum numbers
mj take the values {−j, −j + 1, · · · , j − 1, j} provided
j = |κ| − 1

2 is satisfied. The χ’s are spin-angular func-
tions defined by Clebsch-Gordon coefficients C and Pauli
Spinors χms

χmjκ =
∑

ms=↑,↓

C(l
1

2
j;mj −ms,ms)Y

mj−ms
l (r̂)χms (26)

χ
mj
−κ =

∑
ms=↑,↓

C(l̄
1

2
j;mj −ms,ms)Y

mj−ms
l̄

(r̂)χms (27)

with quantum numbers l and l̄ given through

l =

{
κ for κ > 0
−κ− 1 for κ < 0

(28)

and

l̄ =

{
κ− 1 for κ > 0
−κ for κ < 0.

(29)

Outside the spheres the wave function is represented by
the scattered wave form

Ψout
n (r) =

∑
κmj

anκmj {J
mj
κ (r) + tnκ(εn)Hmj

κ (r)} (30)

with J
mj
κ (r) and H

mj
κ (r) being Bessel and Hankel spinors

with upper (u) and lower (l) components defined through(
Sκ = κ

|κ|

)
Jmjκ (r) =

[
Juκ,mj (r)

J lκ,mj (r)

]
=

[
jl(knr)χ

mj
κ (r̂)

iknSκ
εn+1 jl̄(knr)χ

mj
−κ(r̂)

]
(31)

Hmj
κ (r) =

[
Hu
κ,mj (r)

H l
κ,mj (r)

]
= ikn(εn + 1)

[
hl(knr)χ

mj
κ (r̂)

iknSκ
εn+1 hl̄(knr)χ

mj
−κ(r̂)

]
. (32)

The details about the procedure are the same as in the
non-relativistic case and have been derived elsewhere [20].
Here, it is important that the t-matrices in (30) solely de-
pend on the quantum number κ. The formulation of a free
particle Green’s function is a problem that is slightly dif-
ferent from the non-relativistic case. The essential point is
that the Green’s function has to be constructed by dyadic
products of free particle eigenstates rather than by scalar
products as in the Kohn-Sham theory. Such dyadic prod-
ucts are defined through A ⊗ B = C ≡ Ai ⊗ Bj = Cij
where A and B are arbitrary tensors of rank one and
the resultant C is of rank two. Therefore, the relativistic
Green’s Function can be written as

G0(r, r′) =
∑
κ,mj

{
Hmj
κ (r) ⊗ Jmj+κ (r′)Θ(r − r′)

+Jmjκ (r)⊗Hmj+
κ (r′)Θ(r′ − r)

}
(33)

where the Θ(r−r′) are usual step functions. This Green’s
function differs from that derived by Rose [19] since it
is not possible to obtain the Green’s function for r < r′

from that for r′ < r by simply interchanging r and r′. This
result has also been found by Tamura [21] who studied the
relativistic Green’s function in terms of the left and right
handed solutions to the Dirac equation. Evaluating the
dyadic products gives exactly the same elements of the
2× 2 Green’s matrix as derived by Tamura [22].

The last step in our calculation consists in deriving a
multipolar expansion for G0. In straightforward general-
ization of the non-relativistic results [23] we write

G0(rm, r
′
n) =

∑
κmj

∑
κ′m′j

G
κ,mj
κ′,m′j

(ρmn)

×
{
Jmjκ (−r)⊗ J

m′j
κ′ (r′)Θr>r′ + Jmjκ (r)⊗ J

m′j
κ′ (−r′)Θr<r′

}
(34)

with cell centered coordinates ri = r − Ri and bond
vectors ρmn = k(Rm − Rn). Additionally, the relativis-
tic structure constants can be obtained from their non-
relativistic counterparts by means of the Onodera-Okazaki
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relation [24]

G
κ,mj
κ′,m′j

(ρmn)=
∑

ms=↑,↓

C
κ,mj
ms,mj−ms·G

l′,m′j−ms
l,mj−ms

(ρmn)·C
κ′,m′j
ms,m′j−ms

(35)

with Ck,li,j denoting Clebsch-Gordon coefficients. This re-
lation is essentially useful for separating the relativistic
structure constants since it allows us to use the results
obtained in the last section. A re-derivation of the rela-
tion has also been presented by Wang et al. [25]. Then the
structure constants can be written as

G
κ,mj
κ′,m′j

(ρmn)=
ei·ρ

ρ

∑
λ

∑
ms=↑,↓

C
κ,mj
ms,mj−msΓ̃

l,mj−ms
λ (ρmn)

× Γ
l′,m′j−ms
λ (ρmn)C

κ′,m′j
ms,m′j−ms

(36)

and by introducing the shorthand notations

Ũ
κ,mj
λ (ρmn,ms) = C

κ,mj
ms,mj−ms Γ̃

l,mj−ms
λ (ρmn) (37)

U
κ′,m′j
λ (ρmn,ms) = Γ

l′,m′j−ms
λ (ρmn)C

κ′,m′j
ms,m′j−ms

(38)

they reduce to the compact form

G
κ,mj
κ′,m′j

(ρmn) =
ei·ρ

ρ

∑
λ

∑
ms=↑,↓

Ũ
κ,mj
λ (ρmn,ms)

× U
κ′,m′j
λ (ρmn,ms). (39)

This equation yields the same result as the one published
by Fujikawa and Yimagawa [26], although we used an al-
ternative route to derive it. It should be mentioned that
due to the explicit appearance of spin states equation (39)
is especially useful when discussing spin-flip scattering. In
the next step we have to reveal in which way the scatter-
ing amplitudes are influenced by equation (39). The rela-
tivistic scattering path for the atomic system described in
Section 2 is given by

GκD,mjD
κf ,mjf

(RD,R1,R0) = GκD,mjD
κf ,mjf

(ρD,0)

+
∑
κ1mj1

GκD,mjD
κ1,mj1

(ρD,1)

× tκ1(R1)Gκ1,mj1
κf ,mjf

(ρ1,0) (40)

= MκD,mjD
κf ,mjf

(RD,R0)

+NκD,mjD
κf ,mjf

(RD,R1,R0) (41)

and in complete analogy to Section 2 we obtain for the
direct and single scattered Green’s Function

MκD,mjD
κf ,mjf

(RD,R0) =
eiρD,0

ρD,0

∑
λ

∑
ms

Tms,ms
λ,λ (ρD,0) (42)

NκD,mjD
κf ,mjf

(RD,R1,R0) =
eiρD,1

ρD,1

eiρD,0

ρD,0

×
∑
λ,λ′

∑
ms,m′s

T
ms,m

′
s

λ,λ′ (ρD,1,ρ1,0)F
ms,m

′
s

λ,λ′ (ρD,1,ρ1,0) (43)

where we have used the notation

T
ms,m

′
s

λ,λ′ (ρD,1,ρ1,0) =
(
T κD,mjD
κf ,mjf

(ρD,1,ρ1,0)
)ms,m′s
λ,λ′

(44)

= Ũ
κD,mjD
λ (ρD,1,ms)

× U
κf ,mjf
λ′ (ρ1,0,m

′
s) (45)

together with

F
ms,m

′
s

λ,λ′ (ρD,1,ρ1,0) =
∑

κ1,mj1

U
κ1,mj1
λ (ρD,1,ms)tκ1(R1)

× Ũ
κ1,mj1
λ′ (ρ1,0,m

′
s).

(46)

We have thus found a relativistic formulation that seems
to be equivalent to the non-relativistic result (15). The ob-
vious difference consists in the explicit appearance of the
electronic spin states within the termination and scatter-
ing matrices. Therefore, the description of the scattering
path contains spin-flip and non spin-flip processes on an
equal footing and allows to analyze spin dependent effects
that arise due to the interaction between the scattering
potential and the scattered electrons.

However, the remarkable lacuna of equation (46) will
become clear if we try to formulate the scattering matri-
ces Fλ,λ′ in terms of just one composite rotation matrix.
Starting from (46), choosing the definitions (37) and fi-
nally adapting (10) we get

F
ms,m

′
s

λ,λ′ (ρD,1,ρ1,0) =
∑
κ1

tκ1(R1)γl1µν(ρD1)γ̃l1ν′µ′(ρ10)

×Q
κ1,ms,m

′
s

νν′ (ΩρD1 , Ωρ10)
(47)

with

Q
κ1,ms,m

′
s

νν′ (ΩρD1 , Ωρ10)=
∑
mj1

C
κ1,mj1
ms,mj1−msR

l1
ν,mj1−ms(ΩρD1)

×Rl1mj1−m′s,ν′(Ω
−1
ρ10

)C
κ1,mj1
m′s,mj1−m

′
s
.

(48)

The latter equation is the relativistic analogue to (18) and
thus requires a formulation in terms of composite rota-
tions. Unfortunately, the appearance of Clebsch-Gordon
coefficients is a circumstance under which the rotation ma-
trices can not be united and therefore (47) is not strictly
comparable to (18). Moreover, in the case of spin-flip pro-
cesses, that is ms 6= m′s, the rotation matrices themselves
prevent a unification. Therefore one may conclude that
the separable approach to electron scattering introduced
by Rehr and Albers can not be generalized rigorously to
theories based on the Dirac equation. In addition, the
same result is true for ferromagnetically ordered solids. In
this case the scattering potentials are derivable from Spin-
DFT [27] or from the more involved Current-DFT [28].
Then the starting point is the Kohn-Sham-Dirac Hamil-
tonian

HDΨn = {αp + β (1 + σBeff [n(r),m(r)])

+Veff [n(r),m(r)]14×4}Ψn = εnΨn. (49)
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The presence of a magnetic field breaks the spherical sym-
metry of the problem and demands to calculate t-matrices
depending on the quantum numbers κ and mj rather than
on κ only. The application of the Rehr-Albers formalism
to ferromagnets therefore breaks down already in the be-
ginning, since one is not allowed to separate the t-matrices
from the summation over mj1 quantum numbers.

4 Conclusion

We tried to derive separable relativistic electron propa-
gators. The calculations showed that angular momentum
decoupling is possible by introducing spin dependent prop-
agators that are related to a free particle Green’s Function
satisfying the Kohn-Sham-Dirac equation. Our investiga-
tion indicates that these Green’s Functions are slightly
different from that obtained by Rose. They do − on the
other hand − agree well with the calculations by Tamura.
In the case of non-magnetic materials the appearance of
Clebsch-Gordon coefficients and the off-diagonal nature of
the rotation matrices in spin space enables us to introduce
composite rotation matrices. For ferromagnetic materials
there is an additional hindrance due to the mj1 depen-
dence of the single site scattering matrices. This fact is
especially deplorable since the application of the Rehr-
Albers formalism to layered magnetic materials could be
a potentially fertile field of research. The only way to con-
serve the numerical advantages of separable propagators
seems to calculate the non-relativistic GLL′ in a separate
step and then inserting them into the Onodera-Okazaki
relation.
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